STABILITY OF PLANE MAGNETOHYDRODYNAMIC
COUETTE FLOW WITH ASYMMETRICAL VELOCITY PROFILE

A, M. Sagalakov

The hydrodynamic stability of plane magnetohydrodynamic Couette flow with asymmetrical
velocity profile formed by a transverse magnetic field is investigated within the framework
of the linear theory, The complete spectrum of the small perturbations is studied for the
characteristic Hartmann numbers. The perturbations are classified in accordance with
their phase velocity at large wave numbers. It is established that the stability of the flow
is controlled by only one type of perturbations, The critical parameters of the problem are
determined. The instability in question recalls the instability of Hartmann flow against
asymmetrical perturbations.

1. We consider plane-parallel flow of a viscous incompressible conducting liquid in a transverse
magnetic field, produced by the motion of the upper plate, The expression for the velocity profile is given
in [1]

sh Gy
u=—w (1.1)

Here u is the velocity profile, and G is the Hartmann number. The unit length was chosen to be the
width of the channel, and the unit velocity that of the upper plate y = 1. The boundary conditions used in the
derivation of (1.1) are

H,=0,dH,Jdy =0, u=0fr y=0u=1fx y=1

(Hy is the longitudinal component of the magnetic field).

This flow is one of the simplest laminar motions of a liquid in magnetohydrodynamics, It can serve
as a certain approximation to the boundary-layer problem [1], and the corresponding velocity profile can
serve as a model for the determination of certain general characteristics of the hydrodynamic stability of
flows with symmetrical velocity profiles.

We assume the magnetic Reynolds numbers to be small. This requirement is satisfied by most flows
realized in experiments. Then the problem of hydrodynamic stability reduces to an analysis of the eigen-
value spectrum of the modified Orr—Sommerfeld equation [2]

PV — 202¢" 4 e = iaRl(u — ) (¢" — o) — u"g] + ¢’ (1.2)

with homogeneous boundary conditions
oY) = 9@ =0 for y=01 1.9)

Here ¢(y) is the amplitude of the stream function of the perturbation; « is the wave number; R is the
Reynolds number; ¢ = X +iY is the complex phase velocity of the perturbation and the eigenvalue of the
problem. Positive and negative Y correspond to perturbations that increase and attenuate with time, re-
spectively, The corresponding decrement is oY,

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 12-
18, May-June, 1971. Original article submitted May 7, 1970.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

353



Another form of plane magnetohydrodynamic Couette flow was investigated in [3, 4]. The problem
studied below differs from that considered earlier in that additional boundary conditions are posed on the
channel axis of the flow with asymmetrical profile, namely the adhesion conditions for the perturbations.

Much attention will be paid below to a study of the complete spectrum of the small perturbations,
which is of interest in the analysis of the time behavior of an arbitrary perturbation. Information concern~
ing the complete spectrum may be necessary also for the development of a nonlinear theory.

2. When G, R, and o are fixed, the solution of the eigenvalue problem (1.2) and (1.3) defines a de-
numerable set of quantities cy. At small oR, the eigenvalues are obtained by perturbation theory in analogy
with the case investigated in [5]. The solution of the problem is sought in the form of a series in powers of
aR. For our purposes it suffices to confine ourselves to the first two approximations, which determine Yy
and Xp, respectively. Omitting the cumbersome intermediate transformations, we present the required ex~

pressions. The formula for Yy is
Yy=—4h/aR @2.1)
w}}ere An is determined from the equations -
8tgd = — kthk, Octgd = kethk (2.2)

In (2.2) we have introduced the notation

8= 1y [V Ta (B G T oBGF — 0 — 1/, (62 — dh)]'k
k=Y [V 5 (@R, — GO + aPGP 4 a2 + Yy (G2 — &h,) e

If o is small, then it is easy to find from (2.2)
Ap = %y A+ 1aG?

Here wp = ¥,7°m +1)2 forn=1, 3,5, . .., and w, is a solution of the equation tanvixp = VXp for n =
2,4, 6, ... .(The zeroth solution is excluded from consideration.) Thus, at sufficiently small & and small
aR and we have the asymptotic expression
fon - G
Yo=——3r 2.3)

The spectral numbering at small « is in increasing order of |Y,|, and for arbitrary « it follows the
order of the eigenvalues at small «. ’

Bearing in mind an approximation of zeroth order in «, we obtain, furthermore,

A ]

GM 2 G* 3 n
X, = =2 [ (14 5 o — o, 7y @4

n

(n=1,3,5,...)
G G?
X,= <u>—‘2ﬁ<i+ gu—)[(z—F}“n)M'—G] —
A, GM  GM M (3¢ 10 2, GM
~ ok, ) (W;_T +4) +27n(7 +T) BT
(n=2,4,6,...)
(M =thY,G, u)=M/G
Here {(u) is the stream velocity averaged over the channel cross section, which makes the main con-
tribution in the expressions for Xn. As n— « (with all other parameters fixed), X, rapidly approaches the
value of (u).
At large o we have |cy| > 1, and, therefore, to find Yy, in the first approximation we can neglect the
shape of the profile, just as in the case of small «, and obtain
Y,=—a/R (n<€a) 2.5)
The magnetic field does not play any role here, in accordance with the general concepts. (The values
of G are assumed to be bounded.)
It is difficult to obtain an analytic estimate for Xy at large «.

The eigenvalues corresponding to large n are close, at finite Reynolds numbers, to the corresponding
values in a liquid at rest [see Eq. (2.1)].
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An investigation of the spectrum in the interval between the asymptotic expressions (2.3), (2.4), and
(2.5) was carried out with the aid of a numerical method developed in [6-8]. The numerical calculations
were performed with a BESM-6 computer, The eigenvalues were obtained with specified accuracy (three
significant figures). The control calculations were performed with the Poiseuille. flow as an example, and
gave good agreement with the numerical results obtained in [9].

3. Let us consider the behavior of small perturbations as a function of & and n for the characteristic
Hartmann numbers at fixed R = 2 - 10°. The limiting case G = 0 was investigated by many workers. The
latest interesting results were obtained in [10, 11], where the stability of plane Couette flow is apparently
covered exhaustively.

With increasing G, an appreciable realignment of the spectrum takes place. In particular, the points
of multiplicity of the eigenvalues, which are present only in the limiting case G = 0, vanish.

Figure 1 shows plots of X, (o) and Yy(o) at G = 3 for the first seven spectral numbers in the entire
range between the asymptotic expressions (here and below, o, = & /2). When « increases, the phase velo-
city of the perturbations tends either to the velocity of the lower wall or to the velocity of the upper wall.
Since this takes place at all Hartmann numbers, we shall classify the perturbations as upper and lower wall
perturbations, in accordance with the behavior of their phase velocity at large wave numbers. In this case
the spectral numbers n=1, 4, 7, . . . correspond to the upper wall perturbations, and the spectral numbers
n=2,3,5,6,...correspond to the lower wall perturbations,

There is a typical difference between the behavior of the upper and lower wall functions Yp(¢) beyond
the asymptotic region at small &, The hydrodynamics of the stream comes into play here primarily in the
upper wall perturbations, whose damping decrement increases in comparison with the case of a liquid at
rest. The net result is a realignment of the spectrum immediately beyond the region of applicability of
formula (2.3). Intersections in the spectrum occur also at larger «. The minimum damping decrement is
not determined everywhere by the first eigenvalue, in contrast to the Couette flow. At the given problem
parameters, the flow is stable. In the region of "dangerous" wave numbers (i.e., values of the order of the
reciprocal characteristic flow dimension), the function Y, () has a weak local maximum,

To gain an idea of the spectrum of the small perturbations at "medium" Hartmann numbers, numeri-
cal calculations were performed at G = 6. In this case the perturbation with n =1 is the upper wall perturba-
tion, and those with n = 2, 3, 4, 5 are the lower wall perturbations. We call attention to the asymmetry in
the subdivision of the perturbations into upper and lower ones.

The singularity noted above in the influence of the hydrodynamics on the damping decrement at small
« holds true also in the present case. A characteristic behavior is exhibited by the lower wall functions
Yn(e), which do not intersect for all &. The function Y, () has a pronounced local maximum at o = 0.55,
which, however, lies lower in the Y plane than the function Y,(a). In the range o = 1-10%, the damping
decrement determined by Y, (@) is much larger than that determined from the indicated lower wall perturba-
tions.

With increasing n, the region of applicability of the asymptotic expressions (2.3) and (2.4) increases.
The asymptotic behavior of the lower wall functions at large o becomes obvious earlier than for the upper
wall function. These general circumstances occur also in the other considered cases.
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Figure 2 shows plots of Y, (o) for the first six spectrum numbers at G = 10 (curves 1-6). Just as for
other G, the stream is stable for a given Reynolds number, The perturbations with n =1, 2, 4, 5, and 6 are
the lower wall perturbations. The behavior of the corresponding functions Yp(a) recalls the case of a liquid
at rest. It must be noted that the phase velocity of these perturbations is practically equal to zero already
at @ = 0.1, and does not change with further increase of a. All this is connected with the appearance of a
flat section in the velocity profile at large G [see (1.1)]. The perturbation with n = 3 will be the upper wall
perturbation, The function Y;(a) has a characteristic maximum in the region of dangerous . The be-
havior of this function illustrates well the strong influence of the hydrodynamics of the flow on the damping
decrement of the upper wall perturbations.

Just as in the case of Hartmann flow, the influence of the term G?¢@" in the right-hand part of (1.2) is
significant only at small oR|C/|, aR|c ~ 1|. The presence of a magnetic field leads in this case to a more
rapid damping of the perturbations in accordance with the general concepts concerning the direct action of
the magnetic field on the perturbations in a conducting liquid.

The considered small-perturbation spectra clearly demonstrate certain general characteristics of
hydrodynamic stability of a flow with an asymmetrical profile, in distinction from a flow with a symmetric-
al profile [8, 9] and with an antisymmetrical velocity profile [10, 11]. We note also that this asymmetrical
case differs significantly from those asymmetrical cases in which the velocity profile has a local maximum
inside the channel.

4. Let us consider the behavior of small perturbations as functions of the Reynolds number. We note
first that the region where the eigenvalues depend only on one parameter,«R is broader than the region of
applicability of the asymptotic expressions at small «. This circumstance is evidenced, in particular, by
the experience with numerical calculations. Thus, numerical calculations obtained for one value of R make
it possible to draw a priori conclusions concerning the cy(®) dependence at other values of R in a certain
region o? <« 1, This interval of variation of o is of interest, for an appreciable realignment of the spectrum
oceurs in it in comparison with the asymptotic behavior. Finally, this remark can be of use in numercal
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calculations for different R. (The given approximation ceases to be valid if the quantity ¢, after subtracting
the plate velocity, becomes comparable in absolute magnitude with @, The latter occurs, for example, on
the asymptotic neutral Lin curve for a Poiseuille flow [12].)

When G < 6.5, numerical calculations show that the flow in question is stable against infinitesimally
small perturbations at all Reynolds numbers, just as in the case of Couette flow in general hydrodynamics.
The characteristic maximum of Y,(¢) in the region of dangerous « appears at G > 3, but so long as G < 6.5
it does not enter into the region of instability of the Y plane. When verifying its position, as a rule, there
is no need to perform numerical calculations up to very large Reynolds numbers (R > 10°), for with increas-
ing R the maximum shifts toward small «, where the approximation considered above can be used, naturally
with due caution,

Instability sets in first at G = 6.5 (the critical number R, is in this case equal to infinity), and then,
with increasing G, the value of R« decreases monotonically to a minimum value 5.8 - 10° at G = 10, Further
increase of G exerts a stabilizing influence. A plot of Rx (G) is shown in Fig. 3. At G > 14 one can obvious-
ly see the asymptotic behavior Ry = 50,000 G. This relation coincides with Lock's asymptotic relation [2].
Indeed, at large G the velocity profile degenerates into an exponential one, and the form of the homogeneous
boundary conditions on the axis ceases to be significant.

Figure 3 shows also a plot of o4 (G) (o 4 is the critical wave number). At G close to 6.5, the value
of ax is small and vanishes at this critical value of the Hartmann number. In the case of large G, Lock's
formula ax = 0,16 G holds true.

Instability is always caused only by the upper wall perturbations. The critical point lies in this case
in the region of the upper plate. With increasing G, the spectral number ni of the unstable perturbations
increases. At G close to the critical value we have ny = 1. When G = 10, n, = 3, as is seen from Fig. 2,
which shows the successive positions of the maximum of Y;(@) at R=5 - 10° and R = 10° (curves 7 and 8).
At G =17 we have ny = 6.

Figure 4 shows the neutral curve for G = 10, Attention is called here to the fact that along the lower
branch of the neutral oscillations the critical point does not tend to the wall when R — «_, The asymptotic
value of ¢ on the lower branch is a constant. In this case the eigenvalue depends only on R,

The instability in question recalls the instability of the Hartmann flow against antisymmetrical per-
turbations. First, this is connected with the fact that, at those G at which there is instability, the investi-
gated velocity profile differs insignificantly from the Hartmann profile (by virtue of the relatively large
value of G). Further, if we consider the characteristic determinants [12] in both cases, then we can verify
that they are approximated with a certain accuracy by one and the same expression, which does not depend
on the second boundary condition: on the wall in the case under consideration (¢' = 0) and on the axis
(p" = 0) in the Hartmann flow; it is difficult to estimate beforehand the ensuing error, all the more because
to approximate the characteristic determinant in this case it is necessary to consider nonviscous solutions
[12] in explicit form, However, if we bear in mind the numerical results obtained for the values of the
critical parameters, this can be done without particular difficulty in the case o, ? « 1, when the series that
represent the nonviscous solutions converge rapidly. It has been established in this case that to obtain
the necessary representation of the characteristic determinant it is necessary to neglect in it, in particular,
the terms OE), ¢ = [1 — e)/c]S/z. Numerical calculations show that ¢ ~ 0.85.

The author thanks M. A, Gol'dshtik for interest in the work and V. A. Sapozhnikov and V. N, Shtern
for useful discussions,
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