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The hydrodynamic stability of plane magnetohydrodynamic C ouette flow with asymmetr ica l  
velocity profile formed by a t r ansver se  magnetic field is investigated within the f ramework 
of the l inear  theory.  The complete spect rum of the small perturbations is studied for the 
charac te r i s t i c  Hartmann numbers .  The perturbations are classif ied in accordance with 
their  phase velocity at large wave numbers .  It is established that the stability of the flow 
is controlled by only one type of per turbat ions.  The cri t ical  pa ramete r s  of the problem are 
determined.  The instabili ty in question recal ls  the instability of Hartmann flow against 
asymmetr ica l  per turbat ions.  

1. We consider  plane-paral le l  flow of a viscous incompressible  conducting liquid in a t r ansverse  
magnetic field, produced by the motion of the upper plate. The express ion for the velocity profile is given 
in [1] 

sh Gy 
u =  sh---ff (1.1) 

Here u is the velocity profile, and G is the Hartmann number.  The unit length was chosen to be the 
width of the channel, and the unit velocity that of the upper pla te  y = 1. The boundary conditions used in the 
derivation of (1.1) are 

Hx = O, dHx/dy = O, u =  0 for y = O; u = I for y = I 

(H x is the longitudinal component of the magnetic field). 

This flow is one of the s implest  laminar  motions of a liquid in magnetohydrodynamics.  It can serve 
as a cer ta in  approximation to the boundary- layer  problem [1], and the corresponding velocity profile can 
serve as a model for the determination of cer ta in  general  charac te r i s t i c s  of the hydrodynamic stabili ty of 
flows with symmet r i ca l  velocity profi les.  

We assume the magnetic Reynolds numbers  to be small .  This requirement  is satisfied by most  flows 
real ized in exper iments .  Then the problem of hydrodynamic stability reduces  to an analysis of the eigen-  
value spectrum of the modified O r r - S o m m e r f e l d  equation [2] 

(p~v _ 2r162 q- ~4~ = iaR[(u - -  c) (r - -  a~r - -  u"r -k G~cP ~ 

with homogeneous boundary conditions 

r  = ~ ' ( y )  = 0 for y = 0 . i  

(i .2)  

(I .3) 

Here r is the amplitude of the s t ream function of the perturbation; ~ is the wave number; R is the 
Reynolds number;  c = X + iY is the complex phase velocity of the perturbation and the eigenvalue of the 
problem. Posi t ive and negative Y cor respond  to perturbations that increase  and attenuate with t ime, r e -  
spectively.  The corresponding decrement  is aY.  
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Another fo rm of plane magnetohydrodynamic Couette flow was investigated in [3, 4]. The problem 
S'tudied below differs  f rom that considered ea r l i e r  in that additional boundary conditions are  posed on the 
channel axis of the flow with a symmet r i ca l  profile,  namely the adhesion conditions for the perturbat ions.  

Much attention will be paid below to a study of the complete spectrum of the small  perturbations,  
which is of in teres t  in the analysis of the time behavior of an a rb i t r a ry  perturbation.  Information concern-  
ing the complete spec t rum may be necessa ry  also for the development of a nonlinear theory.  

2. When G, R, and a are fixed, the solution of the eigenvalue problem (1.2) and (1.3) defines a de-  
numerable set of quantities c n. At small  ~R, the eigenvalues are obtained by perturbation theory  in analogy 
with the case investigated in [5]. The solution of the problem is sought in the form of a ser ies  in powers of 
aR .  For  our purposes  it suffices to confine ourselves  to the f i rs t  two approximations, which determine Yn 
and Xn, respect ively.  Omitting the cumbersome intermediate t ransformat ions ,  we present  the required ex-  
p ress ions .  The formula for Yn is 

Y~ = -- 4A~ ] r162 (2.1) 

where ;~n is determined from the equations 

8 tg8 ---- --  k th k, 8 ctg 8 ---- k cth k (2.2) 

In (2.2) we have introduced the notation 

8 = 1/~ [ ] /~ /4  ( / - ~  - -  G~) ~ + ot2G~ - -  :r __ 1/2 (G2 __ 4~,~)l'/' 
k = V~ IVY1/, ( 4 ~  -- G~) ~ + ~ G '  + a s + l h  (g2 _ 4 ~ ) 1 ' / ,  

If t~ is small ,  then it is easy to find from (2.2) 

Here ~t n = ~4z2 (n +1) 2 for n = 1, 3, 5 . . . . .  and ~n is a solution of the equation t a n ~  = V~n for n = 
2, 4, 6 . . . . .  (The zeroth solution is excluded from consideration.) Thus, at sufficiently small  a and small  
aR  and we have the asymptotic expression 

4z n j- G ~" 
Y~ -- ~/{ (2.3) 

The spectral  numbering at small  t~ is in increasing order  of IYn], and for a rb i t r a ry  a it follows the 
order  of the eigenvalues at small  ~. 

Bearing in mind an approximation of zeroth  o rder  in a ,  we obtain, fur thermore ,  

=<U>--T ~ -}- z z (~+3~) j (2.4) 
(n = l, 3, 5,...) 

C~( C ~ ) 
X ~ = < u > - - ~  l + ~  [ ( 2 + Z ~ ) M - - G I - -  

~'n {GM GM ] M_M - {3G _~_ {0~ 2 GM 
~(~+3~ ) \2-<(--T+ 4, + 2 ~ 2  v]--~--~+4-~j~ 

(n :2 ,4 ,6  . . . .  ) 
(M=thl/~G, < u > = M / G )  

Here (u)  is the s t r eam velocity averaged over the channel c ross  section, which makes the main con-  
tribution in the expressions for Xn. As n - -  oo (with all other pa ramete r s  fixed), Xn rapidly approaches the 
value of (u) .  

At large a we have ICnl >> 1, and, therefore ,  to find Yn in the f i rs t  approximation we can neglect the 
shape of the profile,  just  as in the case of small  a ,  and obtain 

Y~ = - - a /  R (n'~r (2.5) 

The magnetic field does not play any role here,  in accordance with the general  concepts.  (The values 
of G are assumed to be bounded.) 

It  is difficult to obtain an analytic est imate for  X n at large ~.  

The eigenvalues corresponding to large n are close,  at finite Reynolds numbers ,  to the corresponding 
values in a liquid at res t  [see Eq. (2.1)]. 
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An investigation of the spec t rum in the interval between the asymptotic express ions  (2.3), (2.4), and 
(2.5) was ca r r i ed  out with the aid of a numerical  method developed in [6-8]. The numerical  calculations 
were per formed with a BESM-6 computer .  The eigenvalues were obtained with specified accuracy  {three 
significant f igures).  The control  calculations were per formed with the Poiseui l le  flow as an example, and 
gave good agreement  with the numerical  resul ts  obtained in [9]. 

3. Let us consider  the behavior of small  perturbations as a function of ~ and n for the charac te r i s t i c  
Hart-mann numbers  at fixed R = 2 �9 105. The limiting case G = 0 was investigated by many workers .  The 
latest  interest ing resul ts  were obtained in [10, 11], where the stabili ty of plane Couette flow is apparently 
covered exhaustively.  

With increas ing G, an appreciable real ignment of the spect rum takes place. In par t icular ,  the points 
of multiplici ty of the eigenvalues, which are  present  onty in the limiting case G = 0, vanish. 

Figure I shows plots of Xn(~ ) and Yn(~) at G = 3 for the f i rs t  seven spectral  numbers  in the entire 
range between the asymptotic express ions  (here and below, ~p = 0~/2). When ~ increases ,  the phase velo-  
city of the perturbations tends ei ther  to the velocity of the lower wall or  to the velocity of the upper wall. 
Since this takes place at all Hartmann numbers ,  we shall c lassify the perturbations as upper and lower wall 
per turbat ions,  in accordance with the behavior of their  phase velocity at large wave numbers .  In this case 
the spectral  numbers n = 1, 4, 7 . . . .  cor respond to the upper wall perturbat ions,  and the spectral  numbers 
n = 2, 3, 5, 6 . . . .  cor respond to the lower wall per turbat ions.  

There is a typical difference between the behavior of the upper and lower wall functions Yn(~) beyond 
the asymptotic region at small  ~ .  The hydrodynamics of the s t r eam comes into play here  p r imar i ly  in the 
upper wall per turbat ions,  whose damping decrement  increases  in compar ison with the case of a liquid at 
res t .  The net resul t  is a real ignment of the spect rum immediately beyond the region of applicability of 
formula (2.3). Intersect ions  in the spec t rum occur  also at l a rge r  ~. The minimum damping decrement  is 
not determined everywhere  by the f i rs t  eigenvalue, in contras t  to the Couette flow. At the given problem 
paramete r s ,  the flow is stable.  In the region of "dangerous" wave numbers  (i.e., values of the order  of the 
rec iproca l  charac te r i s t i c  flow dimension), the function YI (~) has a weak local maximum. 

To gain an idea of the spec t rum of the small perturbat ions at "medium" Hartmann numbers ,  numer i -  
cal calculations were per formed at G = 6. In this case the perturbation with n = 1 is the upper wall pe r tu rba-  
tion, and those with n = 2, 3, 4, 5 are the lower wall per turbat ions.  We call attention to the a s y m m e t r y  in 
the subdivision of the perturbations into upper and lower ones. 

The singulari ty noted above in the influence of the hydrodynamics on the damping decrement  at small  
holds true also in the present  case .  A charac te r i s t i c  behavior is exhibited by the lower wall functions 

Yn(~), which do not in tersect  for all ~.  The function Yl(~) has a pronounced local maximum at ~ = 0.55, 
which, however,  lies lower in the Y plane than the function Y2(o0. In the range ~ = 1-103, the damping 
decrement  determined by YI (~) is much l a rge r  than that determined from the indicated lower wall pe r tu rba -  
t ions. 

With increas ing n, the region of applicability of the asymptotic expressions (2.3) and (2.4) increases .  
The asymptotic behavior of the lower wall functions at large ~ becomes obvious ea r l i e r  than for  the upper 
wall function. These general  c i rcumstances  occur also in the other considered cases .  
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Figure 2 shows plots of Yn(a) for the f i rs t  six spec t rum numbers  at G = 10 (curves 1-6). Just  as for 
other G, the s t r eam is stable for a given Reynolds number.  The perturbations with n = 1, 2, 4, 5, and 6 are 
the lower wall per turbat ions.  The behavior of the corresponding flmctions Yn(a) recal ls  the case of a liquid 
at r e s t .  It mus t  be noted that the phase velocity of these perturbat ions is pract ical ly  equal to zero  already 
at c~ = 0.1, and does not change with fur ther  increase  of a .  All this is connected with the appearance of a 
flat section in the velocity profile at large G [see (1.1)]. The perturbat ion with n = 3 will be the upper wall 
perturbation.  The function Y3(c~) has a charac ter i s t ic  maximum in the region of dangerous a .  The be-  
havior of this function i l lus t ra tes  well the s trong influence of the hydrodynamics of the flow on the damping 
decrement  of the upper wall per turbat ions.  

Jus t  as in the case of Hartmann flow, the influence of the t e rm G 2 q~" in the r ight-hand part  of (1.2) is 
significant only at small  (~RIC I, ~RIc - 11. The presence of a magnetic field leads in this case to a more  
rapid damping of the perturbations in accordance with the general  concepts concerning the direct  action of 
the magnetic field on the perturbations in a conducting liquid. 

The considered smal l -per turba t ion  spec t ra  c lear ly  demonstrate  cer ta in  general  charac te r i s t i cs  of 
hydrodynamic stability of a flow with an asymmet r ica l  profile,  in distinction f rom a flow with a s y m m e t r i c -  
al profile [8, 9] and with an ant isymmetr ica l  velocity profile [10, 11]. We note also that this asymmetr ica l  
case differs significantly f rom those asymmetr ica l  cases  in which the velocity profile has a local maximum 
inside the channel.  

4. Let us consider  the behavior of small  perturbations as functions of the Reynolds number.  We note 
f i r s t  that the region where the eigenvalues depend only on one paramete r ,  o!R is b roader  than the region of 
applicability of the asymptotic expressions at small  ~. This c i rcumstance  is evidenced, in par t icular ,  by 
the experience with numerical  calculations.  Thus, numerical  calculations obtained for one value of R make 
it possible to draw a pr ior i  conclusions concerning the Cn(~) dependence at other values of R in a cer ta in  
region ~2 << 1. This interval  of variat ion of ~ is of interest ,  for an appreciable real ignment of the spect rum 
occurs  in it in compar ison with the asymptotic behavior.  Finally, this r emark  can be of use in numercal  
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ca lcu la t ions  for d i f ferent  R. (The given approximat ion  c e a s e s  to be val id  if the quantity c, a f te r  sub t rac t ing  
the plate  veloci ty ,  becomes  comparab l e  in absolute magnitude with a~. The l a t t e r  occu r s ,  for  example ,  on 
the asymptot ic  neut ra l  Lin curve for  a Po i seu i l l e  flow [12].) 

When G < 6.5, numer i ca l  ca lcu la t ions  show that the flow in question is s table  agains t  i n f in i t e s ima l ly  
smal l  pe r tu rba t ions  at all  Reynolds numbers ,  jus t  as in the case  of Couette flow in gene ra l  hydrodynamics .  
The c h a r a c t e r i s t i c  max imum of YI(~) in the region  of dangerous  a appea r s  at G > 3, but so long as G < 6.5 
i t  does not en te r  into the reg ion  of ins t ab i l i ty  of the Y plane.  When ver i fy ing  i ts  posi t ion,  as a ru le ,  t he re  
i s  no need to p e r f o r m  numer i ca l  ca lcu la t ions  up to ve ry  l a rge  Reynolds numbers  (R > 106), for  with i n c r e a s -  
ing R the max imum shif ts  toward  sma l l  a ,  where  the approx imat ion  cons ide red  above can be used,  na tu ra l ly  
with due caut ion.  

Ins tab i l i ty  se ts  in f i r s t  at G = 6.5 (the c r i t i c a l  number  R .  is  in th is  case  equal to infinity),  and then, 
with i nc r ea s ing  G, the value of R .  d e c r e a s e s  monotonica l ly  to a min imum value 5.8 �9 105 at G = 10. F u r t h e r  
i n c r e a s e  of G e x e r t s  a s t ab i l i z ing  inf luence.  A plot of R .  (G7 is  shown in Fig .  3. At G > 14 one can obvious-  
ly  see  the asympto t ic  behavior  R .  = 50,000 G. This  re la t ion  coinc ides  with Lock ' s  asympto t ic  r e l a t ion  [2]. 
Indeed,  at l a rge  G the ve loc i ty  prof i le  degene ra t e s  into an exponent ia l  one, and the form of the homogeneous 
boundary condit ions on the axis  c e a s e s  to be s ignif icant .  

F igu re  3 shows also  a plot  of a .  (G7 ( a ,  is  the c r i t i c a l  wave number) .  At G c lose  to 6.5, the value 
of a .  is  sma l l  and vanishes  at th is  c r i t i c a l  value of the Har tmann number .  In the case  of l a rge  G, Lock ' s  
fo rmula  ~ .  = 0.16 G holds t rue .  

Ins tab i l i ty  i s  always caused  only by the upper  wall pe r tu rba t i ons .  The c r i t i c a l  point l i e s  in this  case  
in the region  of the upper  p la te .  With i nc r ea s i ng  G, the s p e c t r a l  number  n .  of the uns table  pe r tu rba t ions  
i n c r e a s e s .  At G c lose  to the c r i t i c a l  value we have n .  = 1. when G = 10, n .  = 3, as is  seen f rom Fig .  2, 
which shows the s u c c e s s i v e  pos i t ions  of the maximum of Y3(o0 at R = 5 �9 105 and R = 106 (curves 7 and 8). 
At G = 1 7 w e h a v e  n .  = 6 .  

F igure  4 shows the neut ra l  curve for  G = 10. Attent ion is ca l l ed  he re  to the fact  that  along the lower  
branch  of the neu t ra l  osc i l l a t ions  the c r i t i c a l  point does not tend to the wall  when R ~ oo. The asympto t ic  
value of c on the lower  b ranch  is a constant .  In this  case  the eigenvalue depends only on ~R.  

The ins t ab i l i t y  in quest ion r e c a l l s  the ins tab i l i ty  of the Har tmann flow against  a n t i s y m m e t r i c a l  p e r -  
t u rba t ions .  F i r s t ,  this  is  connected with the fact that, at those G at which the re  is ins tab i l i ty ,  the i n v e s t i -  
gated ve loc i ty  prof i le  d i f fe rs  ins ign i f ican t ly  f rom the Har tmann prof i le  (by v i r tue  of the r e l a t i v e l y  l a rge  
value of G). F u r t h e r ,  if we cons ide r  the c h a r a c t e r i s t i c  de te rminan t s  [12] in both c a s e s ,  then we can ver i fy  
that  they a re  approx imated  with a c e r t a i n  accu racy  by one and the same  expres s ion ,  which does not depend 
on the second boundary condit ion:  on the wall  in the ca se  under  cons ide ra t ion  (~' = 0) and on the axis  
(~" = 0) in the Har tmann flow; it is  diff icult  to e s t i m a t e  beforehand the ensuing e r r o r ,  al l  the more  because  
to approximate  the c h a r a c t e r i s t i c  de t e rminan t  in this  case  it is  n e c e s s a r y  to cons ide r  nonviscous solutions 
[12] in expl ic i t  fo rm.  However,  if we b e a r  in mind the numer i ca l  r e s u l t s  obtained for  the values  of the 
c r i t i c a l  p a r a m e t e r s ,  th is  can be done without p a r t i c u l a r  diff iculty in the case  ~ .  2 << 1, when the s e r i e s  that 
r e p r e s e n t  the nonviscous solut ions  converge  rap id ly .  It has been e s t ab l i shed  in this  case  that to obtain 
the n e c e s s a r y  r e p r e s e n t a t i o n  of the c h a r a c t e r i s t i c  de te rminan t  it  is  n e c e s s a r y  to neglect  in it ,  in p a r t i c u l a r ,  
the t e r m s  O(e),  e = [(1 - c)/c]5/2.  Numer ica l  ca lcu la t ions  show that  c ~ 0.85. 

The author  thanks M. A. Gol 'dsh t ik  for i n t e re s t  in the work and V. A. Sapozhnikov and V. N. Shtern 
for  useful  d i s c u s s i o n s .  
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